TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI
TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.
FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA. [EQUAÇÃO DE DIRAC].
+ FUNÇÃO DE RADIOATIVIDADE
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ ENTROPIA REVERSÍVEL
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
ENERGIA DE PLANCK
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG
XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
sistema de dez dimensões de Graceli + DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..
- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
número atômico, estrutura eletrônica, níveis de energia - TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG l
N l El tf l P l Ml tfefel Ta l Rl Ll * D
X [ESTADO QUÂNTICO].
Na teoria quântica de campos, as distribuições de Wightman podem ser analiticamente continua a funções analíticas em espaço euclidiano com o domínio restrito ao conjunto ordenado de pontos no espaço euclidiano sem pontos coincidentes. Essas funções são chamadas as funções Schwinger, em homenagem a Julian Schwinger. São funções analíticas, simétricas sob a permutação de argumentos[1] (antisimétrico para campos fermiônicos[2][3]) euclidianos covariante e satisfazem uma propriedade conhecida como positividade de reflexão.
Escolha qualquer coordenada arbitrária τ e escolha uma função de teste fN em um conjunto com N pontos como seus argumentos. Suponha que fN tem o seu apoio no subconjunto de tempo-ordenado de N pontos com 0 < τ1 < ... < τN. Selecione uma fN tal que para cada N positivo, com os f sendo zero para todos os N maiores do que algum número inteiro M. Dado um ponto x, seja o ponto refletido acerca do hiperplano τ = 0. Então,
X
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+ FUNÇÃO TÉRMICA.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl * D
Na teoria quântica de campos, as distribuições de Wightman podem ser analiticamente continua a funções analíticas em espaço euclidiano com o domínio restrito ao conjunto ordenado de pontos no espaço euclidiano sem pontos coincidentes. Essas funções são chamadas as funções Schwinger, em homenagem a Julian Schwinger. São funções analíticas, simétricas sob a permutação de argumentos[1] (antisimétrico para campos fermiônicos[2][3]) euclidianos covariante e satisfazem uma propriedade conhecida como positividade de reflexão.
Escolha qualquer coordenada arbitrária τ e escolha uma função de teste fN em um conjunto com N pontos como seus argumentos. Suponha que fN tem o seu apoio no subconjunto de tempo-ordenado de N pontos com 0 < τ1 < ... < τN. Selecione uma fN tal que para cada N positivo, com os f sendo zero para todos os N maiores do que algum número inteiro M. Dado um ponto x, seja o ponto refletido acerca do hiperplano τ = 0. Então,
X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde * representa a conjugação complexa.[4]
O teorema de Osterwalder-Schrader afirma que as funções Schwinger que satisfazem essas propriedades podem ser analiticamente continuas dentro de uma teoria quântica de campos.[5] A integração de funcionais euclidianas satisfaz formalmente a reflexão de positividade[6][7]. Escolha qualquer polinômio funcional F do campo φ, que não depende do valor de φ(x) para os pontos x cujas coordenadas τ são não positivas. Então,
X
onde * representa a conjugação complexa.[4]
O teorema de Osterwalder-Schrader afirma que as funções Schwinger que satisfazem essas propriedades podem ser analiticamente continuas dentro de uma teoria quântica de campos.[5] A integração de funcionais euclidianas satisfaz formalmente a reflexão de positividade[6][7]. Escolha qualquer polinômio funcional F do campo φ, que não depende do valor de φ(x) para os pontos x cujas coordenadas τ são não positivas. Então,
X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Uma vez que a ação S é real e pode ser dividida em S+, que só depende de φ no semi-espaço positivo[8] e S− que só depende de φ no semi-espaço negativo[9] e se S também acontece ser invariante sob a ação combinada de tomada de uma reflexão e conjugando complexo todos os campos; então, a quantidade precedente tem de ser não negativa.[10].
Um gás de Bose ideal é uma versão quântica de um gás ideal clássico. Ele é composto de bósons, partículas que têm um valor inteiro de spin, e portanto obedecem a estatística de Bose-Einstein. A mecânica estatística de bósons foi desenvolvida por Satyendra Nath Bose para fótons, e estendida posteriormente por Albert Einstein para partículas massivas. Einstein percebeu que um gás ideal de bósons iria se condensar quando a temperatura fosse baixa o suficiente, o que não ocorre com um gás ideal clássico. Esta fase da matéria ficou conhecida como Condensado de Bose-Einstein.
Uma vez que a ação S é real e pode ser dividida em S+, que só depende de φ no semi-espaço positivo[8] e S− que só depende de φ no semi-espaço negativo[9] e se S também acontece ser invariante sob a ação combinada de tomada de uma reflexão e conjugando complexo todos os campos; então, a quantidade precedente tem de ser não negativa.[10].
Um gás de Bose ideal é uma versão quântica de um gás ideal clássico. Ele é composto de bósons, partículas que têm um valor inteiro de spin, e portanto obedecem a estatística de Bose-Einstein. A mecânica estatística de bósons foi desenvolvida por Satyendra Nath Bose para fótons, e estendida posteriormente por Albert Einstein para partículas massivas. Einstein percebeu que um gás ideal de bósons iria se condensar quando a temperatura fosse baixa o suficiente, o que não ocorre com um gás ideal clássico. Esta fase da matéria ficou conhecida como Condensado de Bose-Einstein.
Potencial termodinâmico
Devido a Interação de troca, a maneira mais simples de trabalhar com gases quânticos é com o ensemble grande canônico:
- X
Devido a Interação de troca, a maneira mais simples de trabalhar com gases quânticos é com o ensemble grande canônico:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
que para um gás fica:
- X
que para um gás fica:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
A segunda soma é restrita ao número total de partículas ser . Uma maneira de fazer tal soma é somar primeiro sobre todos os possíveis e depois multiplicar todos os níveis. Para um sistema de bósons, qualquer valor de é permitido, logo:
- X
A segunda soma é restrita ao número total de partículas ser . Uma maneira de fazer tal soma é somar primeiro sobre todos os possíveis e depois multiplicar todos os níveis. Para um sistema de bósons, qualquer valor de é permitido, logo:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
O potencial termodinâmico é então:
- X
O potencial termodinâmico é então:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Se o gás possuir apenas graus de liberdade translacionais em dimensões (os demais casos podem ser tratados de forma análoga):
- X
Se o gás possuir apenas graus de liberdade translacionais em dimensões (os demais casos podem ser tratados de forma análoga):
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Note que a função polilogarítmica só está definida para reais menores ou iguais a 1. O segundo termo que já estava presente na expressão anterior é a contribuição de momento zero, ou seja, do estado de menor energia.
Note que a função polilogarítmica só está definida para reais menores ou iguais a 1. O segundo termo que já estava presente na expressão anterior é a contribuição de momento zero, ou seja, do estado de menor energia.
Condensação de Bose-Einstein
O gás de bósons é o sistema mais simples que apresenta o fenômeno de condensação de Bose-Einstein. Para ver esse efeito, escrevemos o número médio de partículas:
- X
O gás de bósons é o sistema mais simples que apresenta o fenômeno de condensação de Bose-Einstein. Para ver esse efeito, escrevemos o número médio de partículas:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
O maior valor da função polilogarítmica acontece em quando o número de partículas em estados excitados é:
- X
O maior valor da função polilogarítmica acontece em quando o número de partículas em estados excitados é:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Perceba que para isso é um número finito que é atingido numa certa temperatura . Todas as demais
- X
Perceba que para isso é um número finito que é atingido numa certa temperatura . Todas as demais
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
partículas deverão estar no estado fundamental, não importando quantas sejam (contanto que a aproximação de gás continue valendo).
partículas deverão estar no estado fundamental, não importando quantas sejam (contanto que a aproximação de gás continue valendo).
Comentários
Postar um comentário