TERCEIRA QUANTIZAÇÃO E RELATIVIDADE SDCTIE GRACELI SISTEMAS DE PARTÍCULAS EM INTERAÇÕES.





TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.



FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll * D
          
X
 [ESTADO QUÂNTICO]



Na teoria da probabilidade, um sistema de partículas em interação (IPS) é um processo estocástico  em algum espaço de configuração  dado por um espaço de sítio, um grafo infinito contável  e um espaço de estado local, um espaço métrico compacto .[1] Mais precisamente, IPSs são processos de Marvok de tempo contínuo que descrevem o comportamento coletivo de componentes estocasticamente em interação. IPSs são os análogo de tempo contínuo dos autômatos celulares estocásticos. Entre os principais exemplos são o modelo de eleições, o processo de contato, o processo de exclusão simples  assimétrico (PESA), a dinâmica de Glauber e, em particular, o modelo Ising estocástico.[2]

IPS são geralmente definidos através de seus geradores de Markov dando origem a um processo de Markov único utilizando semigrupos de Markov e o teorema de Hille-Yosida. Novamente o gerador é dada através das denominadas taxas de transição  onde  é um conjunto finito de sítios e  com  para todo . As taxas descrevem tempos de espera exponenciais do processo para saltar da configuração  para a configuração . Geralmente, as taxas de transição são dadas na forma de uma medida finita  em .

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS

O gerador  de um IPS tem a seguinte forma: primeiro, o domínio de  é um subconjunto do espaço de "observáveis", isto é, o conjunto de valores reais de funções contínuas no espaço de configuração . Em seguida, para qualquer  observável no domínio de , tem-se

.

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS

Por exemplo, para o modelo Ising estocástico temos  se  para alguns  e

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


onde  é a configuração igual a  exceto que ela é invertida no sítio . é um novo parâmetro modelando a temperatura inversa.





Definição formal e propriedades básicas

Definição

Dado um espaço de probabilidade  e um espaço mensurável , um processo estocástico de valor S é um conjunto de variáveis aleatórias de valor S em , indexadas por um conjunto totalmente ordenado T ("tempo"). Isto é, um processo estocástico X é um conjunto

X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS

onde cada  é uma variável de aleatória de valor S em . O espaço S é então chamado de espaço de estados do processo.

Distribuições de dimensões finitas

Seja X um processo estocástico de valor S. Para cada sequência finita de , o k-ésimo  é uma variável aleatória tendo valores em . A distribuição  dessa variável aleatória é uma probabilidade medida em . Isso é chamado uma distribuição finita de X. Sob restrições topológicas adequadas, uma coleção “consistente” de distribuições de dimensões finitas pode ser usada para definir um processo estocástico.




Comentários

Postagens mais visitadas deste blog